Security Analytics Thwart Retail Theft, But Tell Us So Much More

shop1

For one department store, it seemed like business as usual as shoppers perused the racks of merchandise, picking out the latest fashions. But in the security office, the person on duty was alerted to an anomaly — on a merchandising display, an entire section of high-priced jeans had been removed quickly. Was this an overzealous shopper looking to try on multiple pairs, or someone from an organized retail theft ring sweeping up inventory?

In this specific scenario, an officer was made aware of this potential incident through the deployment of video analytics as part of the company’s overall surveillance plan and was able to respond quickly. The retailer had established a set of rules within the system’s software so an alert would be issued if more than half the inventory on that rack was removed in less than one minute —  a common scenario known as “shelf sweep” when shoplifters are at work.

The same analytics that are deployed for high-risk security settings, such as airports and government buildings, are equally at home in a retail setting.

Like the shelf-sweep rule, similar guidelines can be created so a security officer can be alerted when someone enters a storeroom after hours or when an object, like a package, is left in one place for too long.

But what is equally exciting is that, because of the nature of analytics and its information-gathering abilities, its applications can go well beyond the security realm and become a boon to other store personnel.

Retailers who have included analytics in their security systems to both detect incidents as they happen and aid in forensic investigations of thefts, slip and falls and other activities, are expanding the reach of this investment and applying it to merchandising, marketing and operations.

After all, these cameras are operating 24/7 so why not take this database of information and look at it in the aggregate?

Let’s go back to that department store and see how analytics can help sell some handbags. Data supplied by the point-of-sale system will tell the store operator how many designer purses have sold, but not how many potential sales of those handbags there were on a given day.

By using the video system, the store can track how many people came through the doors (the total pool of potential buyers), and then break it down even further, using rules within the analytics to narrow down how many people walked down the aisle where the handbags were merchandised and then how many of those shoppers lingered for more than five minutes at the display. This information, teamed with the POS data, can now give that store’s manager a conversion rate on the sale of her designer handbags.

Armed with the knowledge of how many bags were sold vs. how many people stopped to look at them, it may mean that the purses are in a great spot or, if the conversion rate is poor, this is an indicator that the bags need to be displayed elsewhere or the signage improved or the price reduced. Analytics won’t read the minds of the shoppers, but the data can provide a good snapshot of what occurred within the store. Using analytics to determine traffic numbers and patterns can aid in where to locate merchandise and even help set the number of checkouts needed on a given day.

From a security standpoint, analytics in video surveillance is a necessary part of doing business, but by expanding the potential of its use, the entire retail operation can benefit — deploying the same equipment, but just tweaking the data to fit each users’ needs.  It can be win-win for both security and operations, and who doesn’t like that?

To help find answers on which Security Solutions  your organization is best suited for, contact MCC today for a consult and demonstration. 

Spread the word. Share this post!

Leave Comment

Your email address will not be published. Required fields are marked *